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Motivation

¢ Richtmyer-Meshkov (RM) instability, or RMI, occurs when a shock wave passes
through a perturbed interface separating two fluids with different densities
e In natural phenomena/engineering applications:

o Supernova explosion (SNe)
o Inertial confinement fusion (ICF)
o Supersonic combustion in scramjet

P

Supernova remnant (Image Credit: NASA/ESA/HEIC and The Hubble Heritage

RMI evolution (Image Credit: B. M. Wilson, R. Mejia-Alvarez and K. P.
Team (STScl/AURA))

Prestridge)
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Motivation

e A lack of understanding of turbulent mixing induced from RMI, due to:

o Only simultaneous measurements of density and velocity fields in 2D ! 2
o Direct numerical simulations still too expensive
o Methods to save computational cost:
e High-order shock-capturing schemes
o Adaptive gridding for localized and mobile features (shocks, mixing regions, etc.)

e High-order numerical schemes with adaptive mesh refinement (AMR) still not very
popular for RMI simulations:
o Tritschler et al.®> used high-order schemes with uniform grid to study RMI with re-shock

o Grinstein and Gowardhan* used AMR but only second order scheme for RMI simulations
o Mcfarland et al.® also used second order scheme with AMR for inclined interface RMI

! Mohammad Mohaghar et al. “Evaluation of turbulent mixing transition in a shock-driven variable-density flow". In: Journal of Fluid Mechanics 831 (2017),
pp. 779-825.

2Daniel T Reese et al. “Simultaneous direct measurements of concentration and velocity in the Richtmyer—Meshkov instability”. In: Journal of Fluid
Mechanics 849 (2018), pp. 541-575.

3VK Tritschler et al. “On the Richtmyer—Meshkov instability evolving from a deterministic multimode planar interface”. In: Journal of Fluid Mechanics 755
(2014), pp. 429-462.

“FF Grinstein, AA Gowardhan, and AJ Wachtor. “Simulations of Richtmyer—Meshkov instabilities in planar shock-tube experiments”. In: Physics of Fluids
23.3 (2011), p. 034106.

5 Jacob A McFarland, Jeffrey A Greenough, and Devesh Ranjan. “Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface”.

In: Physical Review E 84.2 (2011), p. 026303.
Man Long Wong AMS Seminar Jun 6th, 2019 3/62




Motivation

o Goals of research:
o Numerical framework for simulations of RMI and similar types of flows. The framework
combines:

e Improved high-order shock-capturing methods to preserve fine-scales better
o AMR technique that only applies fine grid cells around localized features

o Study the turbulent mixing induced by RMI through simulations:

o Variable-density mixing effects
o Effects of Reynolds number
e Analyze the performance of reduced-order modeling through second-moment closures



A localized dissipation weighted nonlinear scheme
Outline

1. A localized dissipation nonlinear scheme for shock- and interface-capturing in compressible flows
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A localized dissipation weighted nonlinear scheme

Weighted compact nonlinear schemes (WCNS's): governing equation

e Consider a scalar conservation law for 1D problem:

ou n Of (u)

ot ox =0

o Semi-discretize this equation on a grid with IV points:

du; N Of (u)

ot ox

=0

J
e Need a discrete approximation of the flux derivative:

af (u)
ox

J
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Illustration of methodology of WCNS's © *
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Given the solution values at cell nodes

6Xiaogang Deng and Hanxin Zhang. “Developing high-order weighted compact nonlinear schemes”. In: Journal of Computational Physics 165.1 (2000),
pp. 22-44.

"Shuhai Zhang, Shufen Jiang, and Chi-Wang Shu. “Development of nonlinear weighted compact schemes with increasingly higher order accuracy”. In
Journal of Computational Physics 227.15 (2008), pp. 7294-7321.



A localized dissipation weighted nonlinear scheme

Illustration of methodology of WCNS's © *
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Left-biased interpolation for solution value at cell midpoint ﬂJL

6Deng and Zhang, “Developing high-order weighted compact nonlinear schemes”.

7Zhang, Jiang, and Shu, "Development of nonlinear weighted compact schemes with increasingly higher order accuracy”.
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A e e e b e G e i |
Illustration of methodology of WCNS's © *
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6Deng and Zhang, “Developing high-order weighted compact nonlinear schemes”.

7Zhang, Jiang, and Shu, "Development of nonlinear weighted compact schemes with increasingly higher order accuracy”.



Illustration of methodology of WCNS's © *

Flux-difference splitting method to get the interface solution value and flux at midpoint from
left-biased and right-biased interpolated values

6Deng and Zhang, “Developing high-order weighted compact nonlinear schemes”.

7Zhang, Jiang, and Shu, "Development of nonlinear weighted compact schemes with increasingly higher order accuracy”.



llustration of methodology of WCNS's © 7

Explicit/compact finite difference to approximate at nodes, e.g.

Ty
explicit sixth order midpoint-and- node to-node finite difference (MND):
Of(u) 1 [3 /2 = 25 /- N
O ~ ?x [2 (fj+% - fj_%) 10 (f]+1 f] 1) 384 (fj+g - f]_g)]

J



L eft-biased explicit interpolations
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A localized dissipation weighted nonlinear scheme

Nonlinear interpolations

In weighted essentially non-oscillatory (WENO) interpolations, the linear weights dj, are
replaced with nonlinear weights wy, for shock-capturing:

2 3
EIupwind = Z ElL (5th0rder); Elcniral = Z dzentmlEIk (6thorder)
k=0 Pt
1
2 3
Elonlinear = Z EI,. / Z erntralEIk
k=0 k=0
o . traditional WENO weights by Jiang and Shu (JS)® and improved weights (Z)°

o wientral CU-M2 weights 1

8Guang—Shan Jiang and Chi-Wang Shu. “Efficient implementation of weighted ENO schemes”. In: Journal of computational physics 126.1 (1996),
pp. 202-228.

Rafael Borges et al. “An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws”. In: Journal of Computational Physics 227.6
(2008), pp. 3191-3211.

10XY Hu and Nikolaus A Adams. “Scale separation for implicit large eddy simulation”. In: Journal of Computational Physics230.19 (2011), pp. 7240-7249;



A localized dissipation weighted nonlinear scheme

Locally dissipative (LD) nonlinear weights

e The LD nonlinear weights (hybrid weights) are introduced for localized dissipation at
shocks or discontinuities for regularization:

o +(1—0) Wi, if R, > oy,

wzuntral

. k=0,1,2,3

Wi = .
, otherwise

where R, is a relative smoothness indicator. o is a shock sensor.

e Ensure minimal numerical dissipation in smooth regions (central interpolation) and
one-sided interpolation at discontinuities

o is the Z nonlinear weights and wﬁ,o“t‘ml is improved from CU-M2 nonlinear

weights for localized numerical dissipation

Man Long Wong and Sanjiva K Lele. “High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible
flows". In: Journal of Computational Physics 339 (2017), pp. 179-209.



A localized dissipation weighted nonlinear scheme

Approximate dispersion relation (ADR) technique'?

e For linear schemes, analytical dispersion and dissipation characteristics can be obtained
from Fourier analysis

e ADR used to compute the characteristics of the nonlinear schemes numerically:

3r/4
() poooooonsasss
/21
= o /4
- o
g ﬂ‘/l ‘ = spectral uv} 7w specal
o= WOCNS5 - JS 7r/2 .| | e \\:(:N&fv’» - .'15
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. . . —37/4 " . .
0 w/4 /2  3m/4 ™ 0 /4 /2  3w/4 vy
¢ ¢
(a) Dispersion characteristics (b) Dissipation characteristics

12Sergio Pirozzoli. “On the spectral properties of shock-capturing schemes”. In: Journal of Computational Physics 219.2 (2086), pp. 489-497=



A localized dissipation weighted nonlinear scheme

Numerical tests: 1D shock tube problems

1. Shu-Osher problem®3 [200 points]: Mach 3 shock interacting with a sinusoidal density
field

2

3
Q exact
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14 x [
2. Multi-species shock tube™™ [100 points]:
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13 Chi Wang Shu and Stanley Osher. “Efficient implementation of essentially non-oscillatory shock-capturing schemes” . In: Journal of Computational Physics

nn 4304
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A localized dissipation weighted nonlinear scheme

Numerical test: 2D double Mach reflection®®

it
Post-shock / Pre-shock t=0
e A Mach 10 shock impinges on the wall, / .
and a complex shock reflection structure /
60
evolves /\‘ slip wall
o Kelvin-Helmholtz instability along the slip |
line is only damped by numerical l
dissipation incident shock ~ /
\ /
e The smaller the numerical dissipation, primary triple point \ /
the more the rolled up vortices along the — secondary Mach stem SO REE. /
\ \
- \ R
slip line N =__——HA
g > Q_ \ Mach stem
/ 3t \ ¥V
7 ’;‘ ‘\ A
( - 1
15Phillip Colella and Paul R Woodward. “The piecewise parabolic method (PPM) for gas-dynamical simulations”. In: Journal of computational physics 54.1
(1984), pp. 174-201.
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A localized dissipation weighted nonlinear scheme

Numerical test: 2D double Mach reflection (cont.)

e Density contours [Full domain grid size: 960 x 240]:

o WCNS5-JS and WCNS5-Z
too dissipative to produce
rolled-up vortices along
the slip line

e WCNS6-CU-M2 and
WCNS6-LD can capture
much more fine-scale
vortical structures along
the slip line

(c) WCNS6-CU-M2
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A localized dissipation weighted nonlinear scheme

Numerical test: 3D Taylor-Green vortex

e An essentially incompressible periodic problem
o As time evolves, the inviscid vortex stretches and produces features at smaller scales
e Zero Q-criterion at t = 8 with 643 grid:

() WCNS5-JS (b)) WCNS5-Z () WENS6-CU-M2 (g
e Finer features are captured with WCNS6-CU-M2 and WCNS6-LD



A localized dissipation weighted nonlinear scheme

Numerical test: 3D Taylor-Green vortex (cont.)

e 10

—©— WCNS5 - JS)
041 —B— WCNS5-Z
—— WCNS6 — CU — M2
02
0 2 1 6 8 10 0 2 1 6 8 10
t t
(a) Kinetic energy (b) Enstrophy

Spectra of u at t = 5:

<w‘iwi>/<wiwi>0

o WCNSG6-LD preserves more KE over

102

times 10

e Both WCNS6's outperform WCNS5's in I

- -
predicting growth of enstrophy N

e Both WCNS6's can better capture 10-7
features up to high wavenumber 10




A localized dissipation weighted nonlinear scheme

Summary

o Improved nonlinear interpolation developed for a type of nonlinear schemes for problems
with shocks and material interfaces

e The interpolation adaptively switches between one-sided interpolation around
discontinuities and non-dissipative central interpolation in smooth regions

e The improved scheme WCNS-LD:

o robust at shocks and discontinuities through the regularization
o good resolution and low dissipation properties that are more suited for vortical features



Outline

2. An adaptive mesh refinement framework for multi-species simulations with shock-capturing capability
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An AMR framework

Overview of patch-based adaptive mesh refinement (AMR)

e Patch-based AMR®"designed for
uniform structured Cartesian grids

level 2 grid

level 1 gnd

o A hierarchy of nested "patches" of levels
of varying grid resolution

e Multi-time stepping with Runge-Kutta

schemes:
Ax; Axy_q Axg i i i iy

e Requires numerical scheme in conservative form for treatment at coarse-fine AMR grid
boundaries to ensure discrete conservation:

Ouiy  Fiesg—Fioys Gy ~Ciy
ot Ax Ay

®Marsha J Berger and Phillip Colella. “Local adaptive mesh refinement for shock hydrodynamics”. In: Journal of computational Physics 82.1 (1989),
pp. 64-84.

7 Marsha J Berger and Joseph Oliger. “Adaptive mesh refinement for hyperbolic partial differential equations”. In: Journal of computational Physics 53.3
(1984), pp. 484-512.



An AMR framework

Relation between finite difference schemes and flux difference form®®

e For a central finite difference scheme (compact or explicit) for flux derivative:

~ ~ 1
Ozfjj{_l —|—ﬂFJ/ + aF'+1 == Fx (—G%Fj,Q — CLQFJ;% — (L%Fj,1 — alF.,

1
2

+a2F+3 +a5Fj+2)
e Can be rewritten into flux difference form:

oF %+5Fj+% —l—osz+% =aslkj +a2Fj,% + (a% +ag) F; + (a1 +a2)Fj+

+ (a% + ag) Fjq+ a2Fj+g + agFj+2

)

A High-Order Weighted Compact High Resolution Scheme with Boundary Closures for Compressible Turbulent
In: arXiv preprint arXiv:1809.05784 (2018).

Man Long Wong

1
2

s.t.

~

F;—Ai(ﬁ

— I

[\)\b—l
ol

18A Subramaniam, ML Wong, and SK Lele.
Flows with Shocks".
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An AMR framework

Hydrodynamics Adaptive Mesh Refinement Simulator (HAMeRS)®
In-house flow solver built on parallel SAMRAI library from LLNL to simulate compressible
single-species and multi-species flows with adaptive mesh refinement (AMR) and high-order

shock-capturing methods:
[ Value } [Gradiem} [Multiresolution}
Tagger Tagger Tagger
Y Schemes
Models

Refinement

Euler Initial
Conditions

N.-S. Initial
Conditions

Euler

Euler --> Application [«— g:;/‘i::
N.-S
Boundary

Boundéry
Conditions ti

Conditions
ive Flux Diffusive Flux ¥
High-Order Shock- Scheme Scheme - Sixth-Order FD in
Capturing WCNS Family |~ Conservative Form
Flow Model

Ideal Gas
Equation of
State

rder FD in Non-
nservative Form

Multi-Species . .
Single- (Isothermal Mulltl-pre_cles
Species and Isobaric E( S"I:"ba'nc

Equilibrium) quilibrium)

YMan Long Wong. Hydrodynamics Adaptive Mesh Refinement Simulator. https://github.com/mlwong/HAMeRS. 2018
Man Long Wong
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https://github.com/mlwong/HAMeRS

An AMR framework

Numerical test: 2D inviscid shock-vortex interaction?

e Isentropic vortex interacts with Mach 1.2 stationary shock

e Distorted vortex produces reflected shocks

o Multiple sound waves generated from reflected shock-vortex

interaction

0 D
y}\ Post-shock Pre-shock
0
" (@0sy0)
=

Sound pressure, (p — poo) / (poocgo), of reference solution with grid resolution 4096 x 4096:

201 201
15 15 0.04
10 10
0.02
5 5
= 0 = 0 0.00
-5 -5 o
-0.02
-10 —10
-15 -15 —0.04
20 —204
235 -20 -10 0 0 5 -20 10 -20 —10 0
T T i
(a)yt=4 (b)t =28 ()t =16
200samu Inoue and Yuji Hattori. “Sound generation by shock—vortex interactions”. In: Journal of Fluid Mechanics 380 (1999, pp. 81-116.
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An AMR framework

Numerical test: 2D inviscid shock-vortex interaction (cont.)
Refined regions of AMR simulation with base grid resolution 128 x 128 and 1 : 2

ratio (green: level 1; red: level 2):

20

15

—-30 -20

(a)t;4

-10

10 -30 -20

=10

(b)t;8

10 -20 -10 0

Comparison with 512 x 512 uniform grid simulation:

;
a) Global sound pressure
Man Long Wong
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0.03
B —— Reference
a8 0.02 O uniform
2
& o AMR
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’
(b) Local sound pressure
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An AMR framework

Numerical test: 2D inviscid shock-vortex interaction (cont.)

e Weighted number of 300000

cells:

250000 1
lmag Az, 200000 1
> wiNy, w = A

1=0 Tt

— AMR

===+ uniform

150000 1

Weighted number of cells

e In this test problem: 100000 -
wo = 1/4, 50000 M
w1 = 1/27 0 v T T T T T T
0 2 4 6 8 10 12 14 16
w9 = 1

t

Weighted number of cells of AMR simulation ~ 30% of number of cells of uniform grid
(262144 cells) simulation at the end
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction

Post-shock air

Mags =1.68, R =1.016 mm

Material interface with characteristic
length scale ¢; = 0.125 mm

Krypton bubble

A quadrant of the domain is simulated

7

Different grids settings:

Grid Base grid resolution Refinement ratios  Finest grid spacing (um)

A 384 x 128 x 128 1:2, 1.2 7.94
B 768 x 256 x 256 1:2, 1:2 3.97
C 1536 x 512 x 512 1:2, 1:2 1.98

¢ Gradient sensor on pressure, multiresolution sensor on density, and sensor on mass
fraction used for refinement
AMS Seminar Jun 6th, 2019 25 / 62



An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)

e Conservative multi-component Navier-Stokes equations for ideal fluid mixture are solved:

IpY;
gt FV - (puY) + V- Ji =0
ag;u—i-v-(puu—i—p(S—T):O

OoF
o PV LE+P)ul =V (T u—ge—qa) =0

where p, u, p and E are the density, velocity vector, pressure and total energy of the fluid

mixture respectively. Y; is the mass fraction of species ¢ = 1,2, ..., N, with N the total
number of species.

e J; is diffusive mass flux for each species. T, g, and qq are viscous stress tensor,
conductive heat flux and inter-species diffusional enthalpy flux respectively of the mixture.
o Sixth order finite differences for viscous and diffusive fluxes



An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)

e Density fields in zy plane at z = 0 of AMR simulation with grid C:

1.50 1.50

1.25
’g 1.00
é 0.75

> 0.50
0.25
0.00
20 25 30 35 40
2 (mm)
(a)t =28 us

nm)

I~
—

= 0.50

Man Long Wong
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(b) t = 8.8 us
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24

20

1.6

7 8 9 10 1
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(c)t=17.6 us
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Numerical test: 3D viscous shock-bubble interaction (cont.)

o Refined regions (green: level 1; red: level 2):

3.2 3.2

’g = 2.8 ’é\ 1.00 2.8
Eon ] 2.4 Eon 24
= 0.50 k 2.0 = 0.50 2.0
1.6 1.6

20 25 30 35 40 45 0 35 40 45 50 55 6.0
z (mm) z (mm)
(a)t =28 us (b) t = 8.8 us

3.2

28

24

20

1.6

) 6 7 8 9 10 11
z (mm)
(c)t=17.6 us
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)

3D visualization of mass fraction with grid C at end of simulation ¢t = 17.6 us

>

Y X

Man Long Wong AMS Seminar
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An AMR framework

Numerical test: 3D viscous shock-bubble interaction (cont.)

: downstream
centroid, z. ST

® Ymazx IS Yy coordinate of the
upper point with SFg
concentration equals
0.01 maX(YSF6)

ly =g — Xy
lyz = Ymaz + Zmaz

o All statistical quantities of
interests are grid converged

Man Long Wong
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(c) Circulation
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An AMR framework

Summary

e AMR framework developed for multi-species CFD applications

Physics-based sensors such as gradient and multiresolution sensors implemented to detect
features for refinement

Framework successfully tested with simulations?! that consist of interactions between
shocks, material interfaces, and vortices

The sensors for mesh refinement can successfully identify:
o Shock wave and acoustic waves
o Vortical feautes
o Mixing regions

21One more 2D viscous shock-cylinder interaction problem is presented in thesis



Outline

3. High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock



N.-S. simulations of RM instability

Problem setup
e Compressible 2D and 3D multi-species Navier-Stokes simulations set up to study
shock-induced mixing between SFg and air due to RM instability:

~= interface

— shock

W rarefaction

+++ end time of simulation

0.0

0.0 0.1 0.2 0.3 0.4 0.5
unshocked x (m)
SFs
o Mas=1.45 (a) 3D configuration (b) Space-time (x-t) diagram
o Af — PSFs — Pair _ (y oq
PSFg 1 Pair

e 2D domain is cross-section of the 3D domain
¢ Mixing region shocked twice (first shock and re-shock)
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N.-S. simulations of RM instability

Perturbations

Perturbation modes seeded on the interfaces:

e 2D:
AZCOS

e 3D:

2
AZCOS( >cos< szerm)

L.

e 11 modes in total: 0.833 mm < A,,, < 1.25 mm

e A=0.0141 mm

Estimated with impulsive theory, 2D and 3D problems
have same:

o linear growth rates 1,

o time scales 7,

initial conditions



Configurations of 2D and 3D adaptive mesh refinement (AMR) simulations

Simulated with the AMR solver (HAMeRS)

Sixth order WCNS-LD for convective flux

Sixth order finite differences for diffusive and viscous fluxes
Three levels of adaptive meshes (two levels of AMR)
Gradient and multiresolution sensors; also sensor on mass fraction field
Grid resolutions used for convergence test:

2D Grid | Base Grid Resolution | Refinement Ratio | Finest Grid Spacing (mm)
D 2560 x 128 1:2, 1:4 0.0244
E 5120 x 256 1:2, 1:4 0.0122
F 10240 x 512 1:2, 1:4 0.0061
G 20480 x 1024 1:2, 1:4 0.0031
3D Base Grid Refinement Finest Grid Maximum Weighted
Grid Resolution Ratio Grid Spacing (mm) Number of Cells
B 640 x 32 x 32 1:2, 1:4 0.0977 30M
C 1280 x 64 x 64 1:2, 1:4 0.0488 144M
D | 2560 x 128 x 128 1:2, 1:4 0.0244 778M

e ~34 points across smallest initial wavelength for grid D

Man Long Wong
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Visualizations of mole fraction (3D, grid D)

= 1.10 ms (before re-shock)

(d) t = 1.20 ms (after re-shock) (e) t = 1.40 ms (f) t = 1.75 ms



N.-S. simulations of RM instability

2D grid convergence study (over 24 realizations)

fXSFS(l — Xspg)de

f Xspg (1 — Xspg)de

1
TKE = Epu;,u;,

Mixing width W = 4XSF5 (1 - XSFG )dz; Mixedness © =

1.0 10°
[, || D : — grid D
grid D 09 o —= gidE
5] ==+ gridE - “ 1071 —.. giaF
: 0.8 &
== pgridF 2
@ 0.7 2
..... el F
0.6 7 g
2 ¥ E
05 —
1
0.4 !
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16
t (ms) t (ms) t (ms)
(a) Mixing width (b) Mixedness (c) TKE (integrated)
10! 108
= ;m 107
lo jo2{ grid G .
& o
2 < 100
= 1073 =
~ S 10°
el
10 10*
00 02 04 06 08 10 12 14 16 00 02 04 06 08 10 12 14 16
t (ms) t (ms)

(d) Scalar dissipation rate

Man Long Wong
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N.-S. simulations of RM instability

3D grid convergence study

fXSFS(l — Xspg)de

_ _ 1
Mixing width W' = 4Xgpg (1 — Xgpg )dz; Mixedness © = — — ; TKE = Epu;,u”
f XsFg (1 — Xspg)d
1.0
51 = grid B 102
AR e 0.9 o
s grid C T
—-- grid D 08 = <
® § o
3 — =
0.7 g g8
2]
0.6 !5 =
1 —- gidD —
0.5 1077
00 02 04 06 08 1.0 12 14 16 00 02 04 06 08 1.0 12 14 16 0.0 02 04 06 08 1.0 12 14 16
t (ms) t (ms) t (ms)
(a) Mixing width (b) Mixedness (c) TKE (integrated)
104 107
— gridB — @idB e
- - gidC - A
) —-+ gidD —-s gidD S
2 W
E 10 \\;\_
- N
3 :
= . e
— 10 —~

00 02 04 06 08 10 12 14
t (ms)

(d) Scalar dissipation rate
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N.-S. simulations of RM instability

Mole fraction fields t* =t /7.

After first
shock 0.010

0.005
= 0.000
=

y (m)

—0.005

—0.010

0.245 0.250 0.255 0.260 0.265

 (m)

(a) t* =7.5 (t = 0.40 ms)

0.335 0.340 0.345 0.350 0.355 0.345 0.350 0.355 0.360 0.365 0.370 0.375 0.380 0.385 0.390
x (m) 2 (m)

z (m)

*

(b) ¢t* =207 (t=1.10ms) (c) t* =226 (¢t=1.20ms) (d) t*

= 32.9 (t = 1.75 ms)
2D, grid G

0.010 0.010

0.005 0.005

0.000

y (m)

0.000

y (m)

—0.005

—0.005

y (m)

y (m)

—0.010 —0.010

0.245 0.250 ( 0.260 0.265

0.335 0.340 0.345 0.350 0.355 0.345 0.350 0355 0.360 0.36 0.370 0.375 0.380 0.385 0.390
z (m) z (m) z (m) 2 (m)
(a) t* =75 (t=0.40ms) (b) t* =207 (¢t=1.10ms) (c) t*

=226 (t=1.20ms) (d) ¢* =32.9 (t =1.75 ms)

3D, grid D
AMS Seminar
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N.-S. simulations of RM instability

Reduced Reynolds number 3D simulations

e Reynolds number Reyy is reduced by increasing physical transport coefficients (TC's) by
factors of 2 & 4 (p, py, D, and k). This is as same as cases with reduced Reyy, while Sc

and Pr unchanged.
0 w
= M where Uypms = i

ReW ’
i

10

10%

(Rew)

10t

e (-) is additional averaging in central part of mixing layer: 4Xgr, (1 — Xspy) > 0.9
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N.-S. simulations of RM instability

Mole fraction fields

After first
shock 0.010

0.010
0.005 0.005
Z0.000 0.000
=

y (m)

—0.005 —0.005
—0.010

—0.010

0.245 0.250 0
z (m)

(a) t* =7.5 (t = 0.40 ms)

0.260 0.265 0.335 0.340 0.315 0.350 0.355 345 0.350 0.355 0.360 0.3 0.370 0.375 0.330 0.385 0.300
x (m) z (m)

z (m)
(c) t* =226 (t=1.20ms) (d) t* =32.9 (t=1.75ms)
Physical transport coefficients, grid D

(b) ¢* =20.7 (t =1.10 ms)

0.010

0.010
0.005

0.005

E0.000 £ 0.000 &
—0.005 —0.005
—0.010 —0.010

0.245 0.250 ¢
z (m)

(a) t* =7.5 (t = 0.40 ms)

0.260 0.265

0.335 0.310 0315 0.350 0.355
z (m)
(b) t* =20.7 (t =1.10 ms)

0.345 0.350 0.355 0.360 0.36

0.370 0.375 0.380 0.385 0.390
z (m)

2 (m)
(c) ¢

=22.6 (t =1.20 ms)
4x physical transport coefficients, grid D
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N.-S. simulations of RM instability

Flow compressibility and effective Atwood number
e Turbulent Mach number Ma; and effective Atwood number At.:

\/gu'rms
Mat =
C
0.30
— 2.
0.251 ——. 3p, physical TC§
0.201 == 3D, 2 x physical TC$
R EETPT 3D, 4 x physical TCs
3 0.15 2
= =
0.0
0.05
| -
0.00 ¥
0 5 10 15 20 25 30

o Flows are weakly compressible

F

Ate = —

0.7

0.6

0.5

S 20

=== 3D, physical TC§

e At. ~ 0 due to initially diffuse interface, but flows become non-Boussinesq (At. > 0.05)
as the interfaces become sharper after first shock and re-shock
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Mixing: mixing width

¢ The mixing width is normalized by 7, and 7.: W™

e With physical TC's, W* of 2D
case grows at a faster rate
compared to that of 3D case
after first shock initially but
growth rates are similar at late
times

o After re-shock, the 2D mixing
width grows at a much faster
rate

3D case with reduced Reynolds
number has slower growth rate
in mixing width before re-shock
but growth rates are similar after
re-shock

Man Long Wong

N.-S. simulations of RM instability

NimpTe

_ W =W,

cd|=™ 2D
=== 3D, physical TC§
==+« 3D, 2 x physical TCs

~~~~~ 3D, 4 x physical TCs
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N.-S. simulations of RM instability

Mixing: mixedness

e The mixedness is defined as:

_ fXSFg (1 — XSF6)d:IJ
fXSFg (1 — XSF@) dzx

)

e Mixedness quantifies the amount
of fluids molecularly mixed
within the mixing region

e The 2D and 3D mixednes values
are converging to 0.7 and 0.8
respectively [0.85 for 3D RMI
from Tritschler et al.?%, 0.8 for
3D RMI from Mohaghar et al.?3]

2 Tritschler et al., “On the Richtmyer—Meshkov instability evolving from a deterministic multimode planar interface”.

= Mohaghar et al., “Evaluation of turbulent mixing transition in a shock-driven variable-density flow".

Man Long Wong
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0.5 1 «= 3D, 2 x physical TCs
3D, 4 x physical TCS
0.4 - v - . . ~
5 10 15 20 25 30
t’!
AMS Seminar Jun 6th, 2019 44 / 62



N.-S. simulations of RM instability

Mixing: mole fraction profiles

1.0 — 1" =0.9 (t=0.05 ms) 1.0 — 1*=22.6 (t=1.20 ms)
- =75 (t=0.40 ms) - " =26.3 (t =1.40 ms)
0.8 e " =14.1 (t =0.75 ms) 0.8 = {*=30.1 (t = 1.60 ms)
e . *=20.7 (t=1.10 ms) N e * =329 (t=1.75 ms)
=06 =06
0.4 0.4
0.2 0.2
0.0 0.0
1.0 05 00 0.5 1.0 15 -0 =05 00 0.5 1.0 15
2 L2
(a) After first shock, before reshock, 3D (b) After reshock, 3D
T — x;
. oy . - * K3
e The normalized position is defined as: z* = W

e Asymmetric, spikes penetrate more than bubbles

e Profiles collapse quite well at late times, similar to planar Rayleigh-Taylor instability*

24Daniel Livescu et al. “High-Reynolds number Rayleigh—Taylor turbulence”. In: Journal of Turbulence 10 (2009), N13.



N.-S. simulations of RM instability

Mixing: mole fraction variance profiles

_4/

"0 Xar (1 Xon,)dr

=1

12 *
XSF6 dx

0.10
w— =09 (t=0.05 ms)
—=e ' =75 (t=0.40 ms)
0.08 1 - 14.1 (t =0.75 ms)
A N *=20.7 (t=1.10 ms)
0.06 £
\7' -.-"” :
= 0.04 £
3
o
0.02 ‘.{f
()'()().m

-1.0 -0.5 0.0 0.5 1.0 1.5

(a) After first shock, before reshock, 3D

0.10
0.08
0.06
W5
= 0.04
0.02

0.00

-1.0

— 1% =22.6(2

——- 1" =263 (t

- t*=30.1(¢
*=329(t

1.20 ms)
1.40 ms)
1.60 ms)

1.75 ms)

-0.5 0.0 0.5 1.0 1.5
x”

(b) After reshock, 3D

o Fluids harder to mix in the heavier fluid side indicated by larger variance

o Approaching self-similarity near end of simulations
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N.-S. simulations of RM instability

TKE time evolution

TKE is defined as:
TKE . 1 ", 1"
= 5/3“1 Uy

e TKE decays at faster rate for 3D
problem compared to 2D

e Among 3D cases, TKE decays at
faster rate before re-shock for
case with smaller Reynolds
number

o After re-shock, all 3D cases have
similar TKE decay rates

Man Long Wong

2D
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Turbulent kinetic energy (TKE) profiles

TKE) W
e The TKE is normalized as: TKE* = (7
[TKE dz
1.4 =09 1.2
T 7 (£=0.05ms) * =226 (t=1.20 ms)
1.2 =175 1.0 * =26.3 (t=1.40 ms)
== (t=0.40 ms) *=30.1 (t =160 ms)
10 telal 1.75 ms)
=+ (t=0.75 ms)
« 0.8 *=20.7
B :I 1.10 ms)
£ 06

(a) After first shock, before reshock, 3D (b) After reshock, 3D

o Peak of TKE is biased towards the lighter fluid side, especially before re-shock
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Anisotropy

e The Reynolds stress anisotropy tensor b;; for 2D and 3D flows defined as:

- i
op _ By 1o sp Ry 1o po_ PUY
b” = = — 5”, bl] = = — 57/]’ where R’L] = —
Ry 2 Ry 3 p
1/2 T 2/3
3/81 r1/2
e 2D Reynolds normal stresses
becoming isotropic at a faster —~ 1/41 RYL —
rate than 3D stresses before "i: ?—a:
re-shock 7 1/81 ot 1/6 =
o After re-shock, 2D Reynolds 2D ‘
normal stresses become isotropic | Ph.\'ﬁu';-l'l(i | -0
== 3D, 2 x physical TCs
----- 3D, 4 x physical TCs
~1/8 - ———————t _1/6
0 5 10 15 20 25 30
{ﬁ



N.-S. simulations of RM instability

Summary

e 2D and 3D RMI have very different time evolution for mixing width and TKE and final
mixedness values

o Reynolds stresses of 2D flow approaching isotropy quickly after both shocks; Reynolds
stresses of 3D flows remain anisotropic at the of simulations

o Fluids are more difficult to mix in 2D configuration

e Reducing Rey has significant effect before re-shock:

o smaller growth rate of W
o larger ©
o larger decay rate of TKE

e Reynolds number has much smaller effect on the growth of mixing width /decay of TKE
after re-shock

More analysis on probability density functions and spectra can be found in manuscript submitted to
Physical Review Fluids?®

2Man Long Wong, Daniel Livescu, and Sanjiva K. Lele. “High-resolution Navier-Stokes simulations of Richtmyer-Meshkov instability with re-shock”. In: arXiv
preprint arXiv:1812.01785 (2018).



Turbulent mass flux for RM instability
Outline

4. Budget of turbulent mass flux and its closure for Richtmyer-Meshkov instability



Turbulent mass flux for RM instability

Favre-averaged momentum equation

Direct numerical simulation (DNS) or large eddy simulation (LES) still very expensive

Reynolds-averaged / Favre-averaged Navier-Stokes (RANS/FANS) simulation with
turbulence modeling is an interim tool

Most turbulent mixing models only tested with experimental results for RM turbulence

High-fidelity simulation data also important for model validation
e Favre-averaged momentum equation (* = p(-)/p):

9 (pt;) +3(ﬁﬂkﬂi) _ O0(poki) | OThi 8(/’)&,7—)

ot or, oxy, oxy, Oxy,

R;; = pu; u”/p Favre-averaged Reynolds stress



Turbulent mass flux for RM instability

Reynolds stress
o Algebaric closure model based on turbulent kinetic energy is not good:
~ 2 ~ ~ 1 (0w Ou, 1 Oty
R = —kdij — 2C,SVES;;, S == L) - 26
R T a vk R 72\ 0xy * ox; 30z,

80 1 4 600
exact (grid C) 9 5
-~ 60 - 3 [ 450
e 2 300 &
2 J model (grid C) &
= 10 ++ model (grid D) g 1 -/ 150 ;
2, 20 o, 0 =, 5 0 :
G A o1 S L 150, '3
3 Y o it -300
5 =20 e 5
= = -3 —450
—40 =2 4 )} 600
3 -2 -1 0 1 2 3 4 -6 -4 -2 0 2 4 6 8
& (mm) & (mm)
(a) t = 1.20 ms (b) t = 1.75 ms

e To improve, transport equation of 2;; is considered:

oR.: O (purR;; p Tj P Ti L R
8pR” + (Puk J) =a; (ap _ TJ}C) a; (ap _ aTzk}) pRZk 87]1 . pRJ 8”2

ot Oxy, Ox;  Oxy Ox;  Oxy Oy, &T
S~ ——
ROC convection

production

+ turbulent transport (unclosed) + pressure strain redistribution (unclosed) 4+ dissipation (unclosed)



Turbulent mass flux and density-specific-volume covariance

e a; = p/ul/p: velocity associated with turbulent mass flux
e To close pa;, BHR model by Besnard et al.?® suggests to model transport of pa;:

0 (pai) +8(pukai) =b < op 8Tki> — J?Z-kaa—p + redistribution

ot oxy Oox;  Oxy, T
ROC convection production

+ turbulent transport (unclosed) + destruction (unclosed)
e b= —p/(1/p)": density-specific-volume covariance
e BHR-3 model by Schwarzkopf et al.?” recommends to model transport of pb:

pb plih
9pb +M —2((b+1) aka— + redistribution -+ turbulent transport (unclosed)

ot oxy, oxy,
~—~
ROC convection production

+ destruction (unclosed)

2 Didier Besnard et al. Turbulence transport equations for variable-density turbulence and their relationship to two-field models. Tech. rep. Los Alamos
National Lab., NM (United States), 1992.

27 john D Schwarzkopf et al. “Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids”. In: Journal of
Turbulence 12 (2011), N49.



Turbulent mass flux for RM instability

Profiles of pa; (in moving frame of interface)

e Using highest Reynolds number 3D case in previous section

e 7 = 1x — x;, where x; is location of interface
o After both first shock and re-shock, pa; spreads and the peak decreases over time

2.5 25
- ===+ t=0.40ms = t=1.20ms
2.0 / \\\ s }=0.75ms 20 - t—1.40 ms
—_ ! —_
4 I Nt |mmee t=1.10 ms - e t=1.60 ms
n " ’ \ N e
~ L5 ! —_— ~ 157 ¥ [ .. t=1.75ms
g 1/ N g
¥ 1.0 / ¥ 10
2 1 i JRISITEO 2N ey
5 v o, 5
=05 /l i 5
A T T | R
77
0.0 f=mm i 01
-3 -2 -1 0 1 2 3 4 -6 —1 -2 0 2 4 6 8
Z (mm) Z (mm)
(b) After re-shock

(a) After first shock, before re-shock
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Turbulent mass flux for RM instability

Budget of turbulent mass flux, pa; (in moving frame of interface)

1000

1.5
L0
0.5

-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4 -6 -4 -2 0 2 1 6 8
Z (mm) Z (mm) Z (mm)
(a) t = 1.10 ms (before re-shock) (b) t = 1.20 ms (after re-shock) (c) t =1.75 ms

e The production and destruction (unclosed) terms are dominant terms in the budget

e The net LHS (rate of change + convection) is negative in the middle part of mixing layer,
causing pai to decrease in magnitude after first shock and re-shock

e Turbulent transport (unclosed) term spreads the profile

e Redistribution and convection terms are small over time



Turbulent mass flux for RM instability

Budget of turbulent mass flux, pa;
e Destruction consists of three unclosed components: p(1/p)'p’y, —p(1/p)'7(;

Y/
€q, = —pu.—=
p al p 7 axk
e p(1/p)'p'y is the only important term after re-shock
250 1c6 led
041 0
~250 1
~1000 |
- 5001
o ~750
I ~2000
g ~1000
£
= 2000 ~1250 1
~1500 1
—4000 1 —1750 1
: —! 2000 -—— —
2 0 2 2 0 2 4 2 0 2 4 5 0 5
Z (mm) Z (mm) Z (mm) Z (mm)
(a) t = 0.40 ms (b) t = 1.10 ms (c) t = 1.20 ms (after (d)t =1.75 ms
(before re-shock) re-shock)
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Turbulent mass flux for RM instability

Assessment of BHR-3% model: unclosed terms of transport equation of
paq

e Turbulent mass flux, pai:

Unclosed Term ‘ Exact Form ‘ Modeled Form 28
78 (p’u’u’/ﬁ) 78 {(SRH/\/E) a171J
Turbulent transport | —p———% | 2C,p
1
Destruction p(> a —Caup—a1
p) Ox S

e C, amd C,; are model coefficients; S is a turbulent length scale

e Assuming S uniform inside mixing region (ignoring S), cancelling common terms and
operators for analyzing validity of model after re-shock (after mixing transition has
occurred)

By = R“'/Z is turbulent kinetic energy per unit mass

29Schwarzkopf et al., “Application of a second-moment closure model to mixing processes involving multicomponent miscible fluids".



Turbulent mass flux for RM instability

BHR-3 assessment: unclosed terms of pa; transport equation (after

re-shock)
e Turbulent transport

30 18 &

»

20 12 2

0.6 =

v

[

exact (grid C) -0.6 Z

==+ exact (grid D) 12 5

—-+ model (grid C) £,

----- model (grid D) -1.8 3}

X

—40 -24
-3 -2 -1 0 1 2 3 4
Z (mm)
(a) t =1.20 ms
o Destruction:
0 o —
) B
” 0y
-0 7 "
P 80 ® o
£ £ 2
~; 08— e 810) % =120, 8 -
~ 2 =
= _08] ~= exact (srid D) - o
}Q —-+ model (grid C) %' S S
= 2101 model (grid D) 200 | Z
-3 -2 -1 0 1 2 3 4
& (mm)
(a) t =1.20 ms
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Turbulent mass flux for RM instability

BHR-3 assessment: turbulent length scales S (after re-shock)
e IV: integral mixing width
e Least square fit within mixing region to estimate S's required for turbulent transport
and destruction terms of pay
e Two length scale turbulence model BHR3.1 [Schwarzkopf et al., 2015] seems unnecessary
for a1 50t
2.0
5.0 1
4.57
4.01
3.51
3.01
2.51
2.01

1.51

(mm)

1.1 1.2 13 1.4 1.5 1.6 1.7
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Turbulent mass flux for RM instability

Summary

e pa; plays an important role for modeling of Rij in BHR-3 model

pai transport equation was analyzed

Destruction term in budget of pa; has different composition before and after re-shock
(after mixing transition)

BHR-3 model captures shapes of unclosed terms of pa; transport equation well

S’s required for modeling unclosed terms of pa; transport equation dependent on each
other

Analysis of budgets and closures for If{ij and b discussed in thesis



Turbulent mass flux for RM instability

Conclusions

e High-resolution and localized dissipation schemes improved for shock problems that
involve flow instabilities and turbulence

o AMR framework was developed and shown to be robust for problems that involve shocks
and multi-species

e Asymmetric variable-density mixing effects examined
e Reynolds number has large effect on the flows before re-shock (before mixing transition)

e The BHR-3 model has good modeling assumptions for the pa; transport equation for
post-transition flows



Questions?

The PhD research was partially supported by Los Alamos National Laboratory, under grant number
431679.



